Purity distribution for bipartite random pure states
نویسنده
چکیده
منابع مشابه
Entanglement of random vectors
We analytically calculate the average value of i-th largest Schmidt coefficient for random pure quantum states. Schmidt coefficients, i.e., eigenvalues of the reduced density matrix, are expressed in the limit of large Hilbert space size and for arbitrary bipartite splitting as an implicit function of index i. Submitted to: J. Phys. A: Math. Gen. PACS numbers: 03.65.Ud, 03.67.-a Entanglement is...
متن کاملOperational axioms for diagonalizing states
In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct...
متن کاملEntanglement probability distribution of bi-partite randomised stabilizer states
We study the entanglement properties of random pure stabilizer states in spin1 2 particles. We obtain a compact and exact expression for the probability distribution of the entanglement values across any bipartite cut. This allows for exact derivations of the average entanglement and the degree of concentration of measure around this average. We also give simple bounds on these quantities. We f...
متن کاملRemote Entanglement Distribution and Entanglement of Assistance
Certain quantum information tasks require entanglement of assistance, namely a reduction of a tripartite entangled state to a bipartite entangled state via local measurements. We establish that ‘concurrence of assistance’ (CoA) identifies capabilities and limitations to producing pure bipartite entangled states from pure tripartite entangled states and prove that CoA is an entanglement monotone...
متن کاملRandom pure states: Quantifying bipartite entanglement beyond the linear statistics.
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017